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Strong piezoelectricity in single-layer graphene
deposited on SiO2 grating substrates
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Electromechanical response of materials is a key property for various applications ranging

from actuators to sophisticated nanoelectromechanical systems. Here electromechanical

properties of the single-layer graphene transferred onto SiO2 calibration grating substrates is

studied via piezoresponse force microscopy and confocal Raman spectroscopy. The

correlation of mechanical strains in graphene layer with the substrate morphology is

established via Raman mapping. Apparent vertical piezoresponse from the single-layer

graphene supported by underlying SiO2 structure is observed by piezoresponse force

microscopy. The calculated vertical piezocoefficient is about 1.4 nm V� 1, that is, much higher

than that of the conventional piezoelectric materials such as lead zirconate titanate and

comparable to that of relaxor single crystals. The observed piezoresponse and achieved strain

in graphene are associated with the chemical interaction of graphene’s carbon atoms with the

oxygen from underlying SiO2. The results provide a basis for future applications of graphene

layers for sensing, actuating and energy harvesting.
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R
ecent discovery of piezoelectricity in two-dimensional (2D)
materials1,2 opens up new opportunities for stretchable
electronics3, sensors, actuators and other electronic

components based on the direct and converse piezoelectric
effects. Being 2D monoatomic material with many unique
properties4, graphene is one of the favourable candidates for
these applications. It exhibits a variety of emergent properties
such as high thermal conductivity5,6, superior mechanical
strength and extremely high flexibility7,8. Although pristine
graphene does not possess any piezoelectric activity due to
its intrinsically centrosymmetric crystal structure, piezoelectricity
can be induced by breaking of the inversion symmetry
by adsorption of foreign atoms, by introducing specific
in-plane defects or by non-uniform deformation of graphene
layers in which strain gradients create internal polarization
in a material2,9–12. The predicted piezoelectricity of modified
graphene is high enough and comparable to that in conventional
piezoelectric materials9. However, only theoretical predictions
have been published so far, which provided the expected values of
piezoelectric coefficients. One of the requirements for any form
of graphene to exhibit piezoelectricity is its semi-conducting or
insulating state. It has been shown that the engineered strain in
graphene leads to opening/tuning of the band gap and, therefore,
graphene can evolve from semi-metal to semi-conducting
state12,13. In theory, if graphene (centrosymmetric) is placed
in a symmetrical strain field, net polarization will remain zero,
and the apparent piezoelectric response will vanish. Therefore, a
non-symmetric strain field (or strain gradient) is needed for the
non-zero net polarization and for the consequent apparent
piezoelectricity of graphene2.

Lee et al.14 demonstrated that the anisotropic strain geometry
of a graphene layer deposited on top of an underlying grid
structure is defined by the period of the substrate. This was
confirmed by the polarization-dependent Raman spectra14.
Another effect in periodically modulated graphene on the SiO2

grating (predicted theoretically) was periodically localized
doping induced by chemical interaction of graphene with SiO2

surface14–17. This interaction with underlying substrate atoms can
also induce the band gap opening18, the net dipole moment and
polarization in the graphene layer.

In this work, we present the results of experimental study of
single-layer graphene (SLG) deposited on SiO2 calibration grating
substrates by piezoresponse force microscopy (PFM) and
confocal Raman spectroscopy. We experimentally confirm the
existence of electric polarization induced in graphene deposited
on SiO2 via direct measurements of converse piezoelectric effect
by PFM. Piezoelectric activity was mainly observed on the
supported graphene regions where van der Waals and/or
chemical interaction between the SiO2 surface and graphene
layer can induce an anisotropic strain and detectable PFM
signal. The in-plane strain in graphene was evaluated by
polarization-dependent Raman spectroscopy.

Results
Materials and experimental set-up. SLG was grown by chemical
vapour deposition on a copper substrate and then transferred
by the wet process on top of the Si/SiO2 calibration grating TGZ4
by the company 2D-Tech (UK) The substrate was a commercially
available standard calibration grating for atomic force microscopy
(AFM) purchased from NT-MDT (Russia). It consisted of a grid
of parallel rectangular pitches with the height 1,317±10 nm and
period 1,500±10 nm. The thickness of the thermally grown SiO2

layer was 1,400±10 nm.
Topography and PFM measurements were performed using a

Ntegra Prima AFM (NT-MDT, Russia) equipped with the lock-in

amplifier (SR-830, Stanford Research, USA) and function
generator (FG-110, Yokohama, Japan). The measurements were
carried out using Pt-coated cantilevers purchased from NT-MDT
(Russia): NSG30/Pt (resonance frequency 270 kHz, force constant
40 N m� 1) and CSG30/Pt (resonance frequency 42 kHz, force
constant 0.6 N m� 1). Standard topography mapping was
carried out in a tapping mode. PFM and conductive AFM were
performed using CSG30/Pt cantilevers in the contact mode. PFM
measurements were carried out in a quasi-static regime at the
frequencies o100 KHz with the 0–5 V amplitude of a.c. excitation
signal under a vacuum B10� 1–10� 2 torr. Frequency-dependent
measurements of PFM amplitude were carried out in the
10–900 kHz frequency range. Raman measurements were
performed using a confocal Raman microscope WiTec
alpha300AR (WiTec GmbH, Germany). A 488-nm solid-state
excitation laser with polarization along the grating stripes was
focused by a 100� objective (numerical aperture¼ 0.75).
Spectral resolution of the used diffraction grating was
3.19 cm� 1. Raman spectra were acquired by a charge-coupled
device camera with 0.2 s integration time.

Measurements. After the deposition of graphene, the topography
measurements of the entire structure (supportedþ suspended
graphene) were performed using a conventional AFM tapping
mode (Fig. 1). In this mode, the topography of graphene layers
remained stable after several consecutive scans, although some of
the suspended areas were damaged.

By contrast, scanning in a contact mode required by PFM
a deleterious effect on the structure of both supported and
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Figure 1 | Topography of the sample. (a) Measured in the tapping mode

topography of SLG on the grating. Left part represents graphene damaged

under scanning. (b) Cross-section along the line A–B showing supported

and suspended graphene areas. Suspended graphene is about 20 nm higher

than the supported one. (c) Schematic of the graphene and substrate

arrangement explaining the origin of the observed bending.
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suspended areas could be seen. Graphene layer could be
destroyed after a single scan even at zero deflection level
(minimal force). Such behaviour demonstrated sufficiently low
stability of graphene under an influence of lateral (in-plane) force
and special care (minimal lateral and vertical forces, orientation
of cantilever normal to the grating pitches) was taken to prevent
early degradation of the SLG during measurements.

Representative topography of the Si/SiO2 calibration grating
substrate with the SLG on top is shown in Fig. 1a. In this
figure, we can clearly distinguish a height contrast between
supported and suspended graphene areas. Higher topography of
the suspended graphene as compared with the supported one
(cross-section shown in Fig. 1b) can be explained by the
apparent bending of SLG under an attractive force exerted by
the tip during scanning in tapping mode (schematic arrangement
is shown in Fig. 1c).

The mechanical strain state of graphene layer was studied by
Raman spectroscopy. Analysis of G-band frequency shift allowed
estimating the value and spatial distribution of mechanical
strains, as well as strain gradients (Supplementary Figs 1–4).

Spatial distribution of the strains (strain map) is shown in
Fig. 2a. Strain over the big area with graphene defects varies in a
wide range from � 7.8 to þ 7.8%. Positive sign here corresponds
to the tension of the graphene sheet, whereas the negative one
shows the compression. The compressive stresses are mainly
localized around graphene holes and along the lines imputed to
wrinkles.

Tensile strains occur in defect-free regions of the graphene.
The largest values of such strains fall on supported graphene
(shaded rectangles in Fig. 2b) and are about 2.5 times greater
than for suspended regions (about 2%). Strains at the grating
ridges are distributed more or less uniformly and demonstrate a
sharp decrease at the grating depressions. Using the Raman
results, we could evaluate the quality of graphene sheet
(Supplementary Note 1). It is demonstrated that the transferred
graphene is mainly a single layer.

PFM measurements were carried out in a contact mode. First,
we applied a conventional low-frequency PFM using high enough
a.c. voltage (5 V) applied between the tip and the substrate to
detect tiny (pm level) piezoelectric vibrations of the graphene
surface. Despite the partial damage, we could find areas where the
topography did not change during scanning. The cross-section of
the PFM (mixed) signal across such an area is shown in Fig. 3.

Zero PFM signal on the right part of Fig. 3b corresponds to
bare SiO2 substrate and, thus, provides a natural reference to the
PFM signal observed on graphene.

It is seen that clear negative piezoresponse is observed on both
supported (shaded areas) and suspended graphene, and the signal

on the supported graphene is four times higher than on the
suspended one. The amplitude of the electric field-induced
vibrations (first harmonic) was about 0.02–0.03 nm. The
maximum strain attained and corresponding piezoelectric
coefficient will be estimated below.

To avoid further degradation of the SLG, voltage spectroscopy
measurements18–20 were performed when the tip was fixed on
graphene surface. Voltage spectroscopy measurements were
carried out in a piezo-step mode to decrease the measurement
time. Measurements performed with the retracted tip showed a
typical electrostatic V-shaped response19–21. Sweeping d.c. bias in
the range � 10 VoVoþ 10 V did not result in any hysteresis
and polarization switching as common for ferroelectric materials.
On the contrary, typical pyroelectric-type behaviour was
observed (Fig. 4) where d.c. bias could only be a source of
additional (electric field-induced) polarization. The amplitude of
the piezoresponse on the SLG was increased when the negative
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Figure 2 | Spatial distribution of strain over the sample structure. (a) Strain map of SLG on the Si/SiO2 grating. (b) Variation of G-band position

and strain across the grating (blue line in a); shaded rectangles correspond to supported graphene; dashed line denotes the initial (unstrained) value of

G-band position.
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Figure 3 | Spatial variation of piezoelectric response. (a) Schematic of the

PFM measurements on single-layer graphene adsorbed on the TGZ4

grating substrate. (b) Cross-section of the piezoresponse along the line on

graphene across the grating structure (shaded areas correspond to

supported graphene). The dashed red line denotes the baseline

corresponding to the signal on the bare SiO2 substrate, which is shown as

the tail at the right part of b. The measurements were carried out at 90 kHz

(Va.c.¼ 5 V). The PFM signal phase y is 180� on graphene.
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d.c. bias was applied to the tip and decreased for the opposite
direction. The reason for such behaviour will be explained below.

To further prove the piezoelectric nature of the response, we
measured the frequency dependence of the signal under different
a.c. voltage levels. Resonance amplification at the cantilever
fundamental resonance was used to get a.c. voltage dependence at
low biases and to verify the linearity of the response. Conven-
tional resonance spectra were observed with the fundamental
resonance at 262 kHz (Fig. 5a). Signal was amplified at the
resonance and demonstrated almost linear behaviour as a
function of a.c. amplitude as expected for true piezoelectricity
(Fig. 5b). Since no V-shaped response in the voltage spectroscopy
measurements was observed (Fig. 4), the electrostatic response
was excluded. No sign of non-linearity was observed up to 2 V of
a.c. bias, thus, attesting graphene to be a linear pyroelectric and
piezoelectric. The resonance frequency of the cantilever on
supported graphene was about six times higher than that of the
free cantilever resonance (42 kHz). It corresponds to the
fundamental resonance for the clamped cantilever22.

Discussion
The supported and suspended graphene layers possess different
chemical structures. We assume that the suspended graphene is a
pristine single layer while the supported one can form chemical
bonds with the underlying SiO2 substrate15. The chemical
interaction of carbon atoms with oxygen atoms of the substrate
can induce non-zero net dipole moment and polarization in the
studied system. The mechanism of the polarization is schematically
shown in Fig. 6. Due to random orientation of the SiO2 complexes
on the surface layer, the Cþ–O� dipoles partly deviate from the
substrate (Fig. 6b). In this case, we can assume that the application
of the negative electric bias to the tip will orient the dipoles closer to
the normal direction and increase the net polarization. Application
of the positive electric field to the tip will deviate dipoles from the
normal direction and decrease the net polarization. As a result,
increasing/decreasing of the net polarization results in increasing/

decreasing amplitude of the PFM signal as shown in Fig. 4b. Note
that the external electric field cannot reorient the fixed dipoles,
therefore, no ferroelectric hysteresis could be observed.
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Figure 4 | Voltage spectroscopy piezoresponse on supported and suspended graphene. (a) Topography of the sample with the tip positions on
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(a) Frequency dependence of PFM amplitude at different a.c. field levels

near the first contact resonance measured on supported graphene layer.

(b) Piezoresponse amplitude at the resonance as a function of applied a.c.

voltage.
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We note that the piezoresponse signal distribution shown in
Fig. 3b correlates well with the mechanical tensile strain
distribution of graphene (Fig. 2b), however, no amplification of
the piezoresponse is observed near the grating edges where the
maximum strain gradient is expected.

It means that the out-of-plane polarization observed in this
work is not coupled with the in-plane symmetry breaking
induced by lateral strain in graphene.

The specificity of the considered system where graphene layer
can act as a top electrode can explain similar behaviour of PFM
response for suspended and supported graphene layers. Specifi-
cally, in the supported graphene (with lower conductivity due to
oxidation), we can excite and detect surface deflection directly
under the tip. When the tip is in contact with the suspended area
(with higher conductivity), the electric field is applied over the
area covered by the graphene sheet, reaches the dipoles in the
supported regions and excites mechanical vibrations. These
mechanical vibrations from the supported regions are transferred
by the graphene membrane and drive the tip.

Significant frequency shift of the G-band seen in the Raman
spectra on the supported regions (Fig. 2b) associated with the high
in-plane strain 4.0–5.0% is a result of the described interaction of
carbon atoms of graphene with oxygen atoms of SiO2. It is known
that the strain in graphene or/and additional oxygen-containing
functional groups can transfer the graphene into semi-conducting
or insulating state12,13, as in the case of graphene oxide (GO).
Simultaneously, the interaction of graphene with SiO2 surface can
also induce the gap opening23. We believe that these effects are
responsible for the appearance of polarization and associated
piezoelectric effect in supported graphene. However, the origin of
the observed strains and piezoelectric activity is chemical (or van
der Waals) interaction between the graphene layer and SiO2.

Strain induced by the electric field E perpendicular to the
surface plane can be described as follows:

u33 ¼ Q33P2: ð1Þ
Here the electric polarization P is the sum of the induced, Pi,

and spontaneous, Ps, polarization: P¼PiþPs¼ (e� 1)e0EþPs.
Then equation (1) can be rewritten as:

u33 ¼ 2Q33ðe� 1Þe0PsEþQ33P2
s þQ33ðe� 1Þ2e2

0E2: ð2Þ
The first term 2Q33(e� 1)e0PsE corresponds to the piezoelectric

effect, with the piezoelectric coefficient d33¼ 2Q33(e� 1)e0Ps. The
last term, Q33ðe� 1Þ2e2

0E2, is an electrostrictive contribution.
Leaving only dynamic components depending on the electric field
E (first and last terms):

u33 ¼ d33EþQ33ðe� 1Þ2e2
0E2; ð3Þ

The applied electric field E is a combination of a.c. Ea.c.

and d.c. Ed.c. components: E¼ Ed.c.þEa.c.. Since the applied

Ea.c.¼E0 cos (otþf0), then normal to the surface
displacement, ua:c:

3 , detected by PFM can be written as:
ua:c:

3 ¼ A1o cos otþf1ð Þ � h d33Ea:c:þ 2Q33ðe� 1Þ2e2
0Ed:c:Ea:c:

� �
,

where h is thickness of the carbon-oxide dipole layer. The
amplitude of the first harmonic thus takes the form:

A1o � d33E0hþ 2Q33ðe� 1Þ2e2
0Ed:c:E0h; ð4Þ

where E0 is the magnitude of a.c. electric component, Ea.c.. For
thin carbon-oxide dipole layer with hooR0, where R0 is the tip
radius, we can consider electric field below the tip in the layer as
uniform. Using the relation for tip potential (Supplementary
Note 2; Supplementary Equations 5–7) and taking into
account that hooR0 and R0oohSiO2 (Supplementary Figure 5),
we can estimate the electric field in carbon-oxide dipole layer
as E � eSiO2

eGO

Vtip

R0
. Then, based on experimental data (Figs 4 and 5),

we can estimate the piezoelectric coefficient d33

as follows: d33 � eGO
eSiO2

R0
h
@A1o
@E0

. At low frequency (that is, in the

quasi-static regime), we estimated @A1o
@E0
� 14pmV� 1. Typical

carbon oxygen bond length in the carbonate ions24 is in the range
1.2–1.5 Å. Typical distance between graphene layers in graphite is
2.5–3 Å. Assuming h¼ 3 Å and R0¼ 30 nm, we can estimate the
longitudinal piezoelectric coefficient of graphene layer
d33 ¼ eGO

eSiO2
1:4nmV� 1, and Q33 ¼ eGO

eSiO2

0:018nm2V � 2

2ðeGe�1 Þ2e2
0

.

Dielectric constant for SiO2 is eSiO2 ¼ 4:42 (ref. 25) and for
GO is eGOE4.3 (ref. 26), then we arrive at the estimation
d33E1.44 nm V� 1 and Q33E11.4 m4 C� 2. The value of
piezoelectric coefficient is more than twice of the best
piezoelectric ceramics of the lead zirconate titanate family27 and
is comparable with the best piezoelectrics of relaxor single crystal
family28. The value of electrostriction coefficient agrees well with
the general trend, that is, increases with the decrease of dielectric
constant and increase of elastic compliance29. Its value is similar
to those of polymers (for example, polyvinyl chloride) and is
much smaller than that for ferroelectric perovskites29.

When this manuscript was prepared for the submission, the
paper by Wang et al.30 was published and reported an in-plane
(band) piezoelectric effect on suspended graphene membranes,
which deformation was controlled by the AFM tip pressure and
both drain and gate voltages. They, thus, measured the in-plane
direct piezoelectric effect in pristine graphene of about
37 nC N� 1. This value is about 25 times greater than that
obtained in our experiments on supported SLG. However, the
piezoresponse was measured under non-equilibrium conditions
where the converse effect should be small due to high in-plane
conductivity. In contrast, we observed a stable static (equilibrium)
out-of-plane converse piezoelectric effect on supported graphene
induced by underlying SiO2. This effect is directly related to a
huge number of possible applications such as motors, actuators,
resonators and micro- and nanomechanical systems based on
graphene. Naturally, the displacement level can be increased by
fabricating thin SiO2 membrane or bridge structures. As such, a
high value of the out-of-plane piezoelectric coefficient observed in
our work provides a basis for such applications.

In summary, we observed a strong piezoelectric activity of the
SLG deposited on Si/SiO2 calibration grating substrates. Mapping
the strain distribution in graphene was performed via confocal
Raman measurements and converse piezoelectric effect was
measured locally by PFM. The piezoelectric activity in graphene
layers was attributed to the chemical interaction of graphene
atoms with underlying oxygen from SiO2 substrate. Piezoelectric
effect is sufficiently high (d33E1.4 nm V� 1, that is, more than
twice of the best piezoelectric ceramics such as modified lead
zirconate titanate). We foresee a number of emergent applications
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Figure 6 | Origin of the measured piezoresponse. (a) Schematic of

graphene layer on SiO2 substrate with oxygen termination. (b) Formation of

Chemical interaction of carbon and oxygen atoms induces dipolar surface

states oriented close to normal of the substrate surface.
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when using graphene/SiO2 structures as a platform for future
sensors and actuators.
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